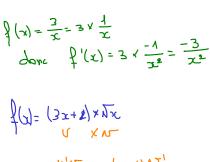
LA FONCTION EXPONENTIELLE

Question théorique

Une équation dont l'inconnue est une fonction

Remarque : si f est une fonction et f' sa fonction dérivée, on remarque que presque toujours : $f'(x) \neq f(x)$. En effet :



- f(x) = 0, a pour dérivée f'(x) = 0. Jone (ix f'(x) = 0) f(x) = k avec k un réel non nul, a pour dérivée f'(x) = 0. Les $f(x) = x^2$ a pour dérivée $f'(x) = \frac{3}{x^2}$ $f(x) = \frac{3}{x}$ a pour dérivée $f'(x) = \frac{3}{x^2}$ $f(x) = (3x + 2) \times \sqrt{x}$ a pour dérivée $f'(x) = \frac{3x + 2}{x^2}$ $f(x) = \frac{3x + 2}{x 4}$ a pour dérivée $f'(x) = \frac{3x + 2}{x 4}$

Question: existe-t-il une fonction f, définie sur R, autre que . A. Forction. . nulle qui soit égale à sa dérivée, c'est à dire telle que pour tout réel x on ait f'(x) = f(x)?

Dans cette équation l'inconnue est la fonction f.

L'inconnue cat une forction

$$f'(x) = 3 \sqrt{x} + (3 x + 2) \times \frac{1}{2\sqrt{x}}$$

$$f'(x) = \frac{3\sqrt{x} \times 2\sqrt{x} + (3x+2)}{2\sqrt{x}}$$

$$\int (x) = \frac{3x + 2}{x - 4}$$

$$\int_{-\infty}^{\infty} \frac{\sqrt{10-00'}}{\sqrt{3(2-4)-(3x+2)}\times 1}$$

$$\int_{-\infty}^{\infty} \frac{3(2-4)-(3x+2)\times 1}{(x-4)^2}$$

$$\int_{0}^{1} (x) = \frac{3x - 12}{3x - 2} = \frac{-14}{(x - 4)^{2}}$$

Calcul d'images 1.2

MEI) la fonction exist alors il va se passer ce qui suit... Supposons qu'il existe une fonction f définie sur \mathbb{R} telle que qui soit égale à sa dérivée. C'est à dire telle que f(x) = f'(x) et que f(0) = 1 (ce n'est donc pas la fonction nulle!). dd 2dif x €US

L'idée est de calculer une valeur approchée des images. Par définition : pour tout réel a, $f'(a) = \lim_{h \to 0} \frac{1}{h}$ (définition du h) derivé)

Ce qui signifie que si « h est très petit » : $f'(a) \approx \frac{f(a+h)-f(a)}{h}$ On va simplifier en admettant l'égalité pour h très petit et strictement positif, c'est à dire on va écrire : $f'(a) = \frac{f(a+h) - f(a)}{L}$

- 1. En admettant l'égalité $f'(a) = \frac{f(a+h) f(a)}{h}$, exprimer f(a+h)en fonction de f'(a) et f(a).
- 2. Or la fonction f est telle que pour tout x réel, f'(x) = f(x). En déduire une expression de f(a+h) en fonction de f(a).
- **3.** D'après cette relation, pour h > 0 et f(a) > 0, on a : f(a+h) > f(a); donc la fonction f est ... sur $[0;+\infty[$, car on a posé f(0) = 1, donc f(0) > 0.
- 4. Compléter les tableaux suivants (on devra s'aider d'un tableur). **pour** h = 1 (pour tester les formules, car 1 n'est pas « très petit »)

pour h = 0,1 h est « petit », il faut (...) ignes de tableur pour pouvoir remplir le deuxième tableau.

1) 1 (a)= 1 (a+h) - f(a)
η η τ τ η
<=> h x f'(2) = f(2+h) - f(2)
<=> hxf'(2)+f(a)=f(a+H)
/=> {(a+h) = {(a)+h* +(2)
2) 1 (3+h)= f(3)+ hx f (a)
<>> \(\frac{1}{2} + \hrack = \frac{1}{2} + \hrack \\ \frac{1}{2} \]
f'(a) = f(a) done on remplace
⇒ f(a+r) = (∧+h) f(a)
3) f(3+1)= (7+1) f(3)
done \$(2+h)> \$(2)
Bilan = si la fonction existe
dle our consente sur
[0.7-1]

tableau $\frac{2^{x}}{f(x)}$ 1 1,1 1,21 $\frac{x}{f(x)}$ 0 0 1 tableau 3 $\frac{x}{f(x)}$ 1 2,594 6,7 pour $\frac{x}{f(x)}$ pour $\frac{x}{f(x)}$ 1 2,594 6,7

pour *h* = 0,01 *h* est « très petit », il faut lignes de tableur pour pouvoir remplir le deuxième tableau.

4 5

0,3

0,9

tableau 5f(x) 1 1,105 7,31

1.3 Propriété

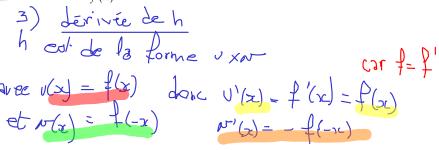
Rappel : f est dérivable et pour x réel, f'(x) = f(x) et f(0) = 1.

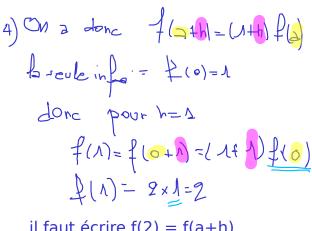
Soit la fonction h définie sur \mathbb{R} par $h(x) = f(x) \times f(-x)$.

- **1.** Calculer h(0).
- **2.** Soit v la fonction définie sur \mathbb{R} par v(x) = f(-x), en déduire v'(x) en fonction de f(x).
- **3.** Calculer la dérivée de *h*.
- **4.** En déduire l'expression de *h*.

Ce qui permet de conclure : pour tout $x \in \mathbb{R}$:

- (a) $f(x) \neq 0$;
- (b) $f(-x) = \frac{1}{f(x)}$: on pourra facilement compléter les tableaux de valeurs pour les valeurs de x négatives.
- (c) donc f(x) > 0


1.4 Bilan


 $\overline{\mathrm{Si}}$ il existe une fonction définie sur $\mathbb R$ telle que :

- (a) pour tout réel x, f'(x) = f(x)
- (b) f(0) = 1

Alors pour tout $x \in \mathbb{R}$:

- (a) f(x) > 0,
- (b) f'(x) > 0, c'est à dire f est strictement croissante sur \mathbb{R}
- (c) $f(-x) = \frac{1}{f(x)}$

il faut écrire f(2) = f(a+h)et ici h = 1, donc pas le choix a = 2

$$f(2) = f(1+1) = (1+1) \times f(1)$$

 $f(2) = 2 \times 2 = 4$

A)
$$h(sc) = f(x) \times f(-sc)$$

done $h(s) = f(s) \times f(-s)$
 $h(s) = f(s) \times f(s)$
 $h(s) = A \times A = A$

2) N(x) = f(-x) V = f(-x)

15 this can f = f (-xc)

1, (20) = 9, (27) x M(x) + M(x)xm, (x)

 $cor f = f' | h'(x) = f(x) \times f(-\infty) - f(x) \times f(-\infty)$ $f(x) = f(x) \times f(-\infty) - f(x) \times f(-\infty)$

or on sait que si la fonction dérivée est nulle, c'est que la fonction étudiée est constante. donc h est une fonction constante, c'est à dire que quelque soit x, elle garde toujours la même valeur. Si x = 0, on sait que h(x) = h(0) = 1

Donc quelque soit le réel x, on aura toujours h(x) = 1C'est à dire f(x) * f(-x) = 1

(sinon le produit est nul)

* comme f(x)> 0 ar [a; +p[,

a donc f(a)>0 mais f=f1

Lonc f'(z)>0

donc & crosszute-

$f(2) = f(1+1) = (4+1) f(1)$ or $h=1$ $f(2) = (1+1) \times 2 = 2 \times 2 = 4$)C	f(x)
2 = 1 $1 = 1$ $1 =$	O	1
et 1(1)=2	Λ	2
th f(1)-2	2	4
	3	8
P(3) = P(2+1) = (1+1) P(2) = 2 × 4 = 8	4	A.C.
$=9\times 4=8$	1	76
	5	32

un idée de suite... on garde cette idée dans un coin de notre tête...

Comme c'est assez répétitif : utilisons un tableur !

1	fonction .	В .		
2	h	1		nouvelle valeur de x c'est (x + h)
3)c	f (24)		· .
4	V V	`1		-
5	= A4+ \$6\$2	= (1+\$8 \$2)	t \$4	
6				
7				_
8				
9				
10				-
11				
12				
13				_
14				-
15				
16				_
17				
18				

🚺 Dérivée de la composée avec une fonction affine

Propriété (admise) On considère un intervalle I et a et b deux réels. Soit Jl'intervalle formé des valeurs prises par ax + b lorsque x décrit l'intervalle I. Si la fonction g est dérivable sur J, alors la fonction f définie sur I par $f: x \mapsto g(ax + b)$ est dérivable sur I et, pour tout réel x de I, on a :

 $f'(x) = a \times g'(ax + b)$

live pros

ici
$$-w(x)=1(-1)xx+0$$

livre : la fonction composée est f = c'est la composée de la fonction g et d'une fonction affine

ICI la fonction composée est v = c'est la composée de la fonction f et d'une fonction affine