

Exercice 1 — Tableau de signes

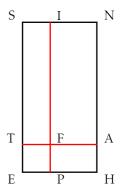
4 points

À l'aide du tableau de signe, résoudre sur \mathbb{R} l'inéquation : (3x-4)(2-x) < 0

X	-∞ +	+∞	schéma
signe de $(3x-4)$			
signe de $(2-x)$			
signe du produit			

Exercice 2 — Somme d'aires

- SEHN est un rectangle tel que SE = 12 et EH = 8;
- P est un point mobile sur le segment [EH]. On pose EP = x;
- la droite (TA) est parallèle à la droite (EH) et le droite (PI) à la droite (SE) : elles se coupent en F telles que TEPF soit un carré.



- 1. Vérifier que $x^2 10x + 16 = (x 2)(x 8)$ Il faut développer
- **2.** On note \mathcal{A} la somme des aires du carré la somme des aires du carré TEPF et du rectangle FANI.
 - a) Calculer \mathcal{A} si EP = 1,5.

- **b)** Montrer que $\mathcal{A} = 2x^2 20x + 96$
 - aire du carré : x^2
 - aire du rectangle : $FA \times AN = (8 x)(12 x)$ donc $\mathcal{A} = x^2 + (8 - x)(12 - x)$; puis développer et réduire.
- c) Déterminer les positions du point P telles que ℒ soit inférieure aux deux tiers de l'aire du rectangle SEHN.

 $x \in [0;8]$ et on veut $\mathcal{A} < \frac{2}{3} \times 8 \times 12$

puis développer l'expression et remarquer qu'elle se factorise.

Déterminer le signe à l'aide d'un tableau de signes puis conclure.

Exercice 3 — Droites et triangle

7 points

Soient les points A(8;6) B(-8;6) et C(6;-8) dans le repère d'origine O.

- 1. Placer les points dans le repère.
- 2. Calculer les coordonnées de B', milieu du segment [AC]

coordonnées du milieu : $\left(\frac{x_A + x_C}{2}; \frac{y_A + y_C}{2};\right)$

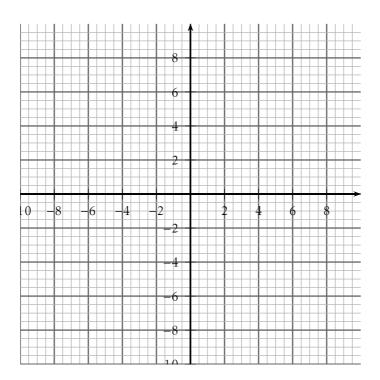
- 3. Déterminer par le calcul, l'équation de la droite (OB'). On sait que la droite passe par l'origine, donc elle représente une fonction linéaire d'équation y = mx avec $m = \frac{y_{B'} y_O}{x_{B'} x_O} = \frac{y_{B'}}{x_{B'}}$
- 4. Sachant que le point O est le centre du cercle circonscrit au triangle ABC : dire (en justifiant) ce que représente la droite (OB').

la droite (OB') passe par le centre du cercle circonscrit et le milieu d'un côté : c'est la médiatrice du segment [AC].

- **5.** Tracer la hauteur *h* issue de B.
- **6.** Justifier que le coefficient directeur de la droite h est $\frac{1}{7}$, puis déterminer son équation réduite.

directeur.

$$y = \frac{1}{7}(x - x_{\rm B}) + y_{\rm B}$$



Exercice 1 — Tableau de signes

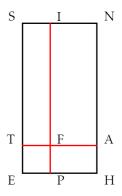
4 points

À l'aide du tableau de signe, résoudre sur \mathbb{R} l'inéquation : (3x-5)(2-x) < 0

X	-∞	+∞	schéma
signe de $(3x - 5)$			
signe de $(2-x)$			
signe du produit			

Exercice 2 — Somme d'aires

- SEHN est un rectangle tel que SE = 18 et EH = 12;
- P est un point mobile sur le segment [EH]. On pose EP = x;
- la droite (TA) est parallèle à la droite (EH) et le droite (PI) à la droite (SE) : elles se coupent en F telles que TEPF soit un carré.



- 1. Vérifier que $x^2 15x + 36 = (x 3)(x 12)$ Il faut développer
- **2.** On note \mathcal{A} la somme des aires du carré la somme des aires du carré TEPF et du rectangle FANI.
 - a) Calculer \mathcal{A} si EP = 1,5.

- **b)** Montrer que $\mathcal{A} = 2x^2 30x + 216$
 - aire du carré : x^2
 - aire du rectangle : $FA \times AN = (12 x)(18 x)$ donc $\mathcal{A} = x^2 + (12 - x)(18 - x)$; puis développer et réduire.
- c) Déterminer les positions du point P telles que 𝒜 soit inférieure aux deux tiers de l'aire du rectangle SEHN.

 $x \in [0;12]$ et on veut $\mathcal{A} < \frac{2}{3} \times 12 \times 18$ puis développer l'expression et remarquer qu'elle se factorise. Déterminer le signe à l'aide d'un tableau de signes puis conclure.

Exercice 3 — Droites et triangle

7 points

Soient les points A(6;-8) B(6;8) et C(-8;-6) dans le repère d'origine O.

- 1. Placer les points dans le repère.
- 2. Calculer les coordonnées de B', milieu du segment [AC]

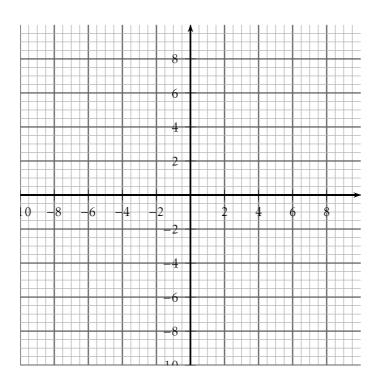
coordonnées du milieu : $\left(\frac{x_A + x_C}{2}; \frac{y_A + y_C}{2};\right)$

- 3. Déterminer par le calcul, l'équation de la droite (OB'). On sait que la droite passe par l'origine, donc elle représente une fonction linéaire d'équation y = mx avec $m = \frac{y_{B'} y_O}{x_{B'} x_O} = \frac{y_{B'}}{x_{B'}}$
- **4.** Sachant que le point O est le centre du cercle circonscrit au triangle ABC : dire (en justifiant) ce que représente la droite (OB'). la droite (OB') passe par le centre du cercle circonscrit et le milieu d'un côté :

c'est la médiatrice du segment [AC].

- **5.** Tracer la hauteur *h* issue de B.
- **6.** Justifier que le coefficient directeur de la droite *h* est 7, puis déterminer son équation réduite.

$$y = 7(x - x_{\rm B}) + y_{\rm B}$$



Exercice 1 — Tableau de signes

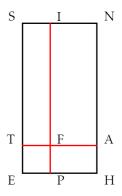
4 points

À l'aide du tableau de signe, résoudre sur \mathbb{R} l'inéquation : (6x-7)(2-x) < 0

X	-∞ +∞	schéma
signe de $(6x-7)$		
signe de $(2-x)$		
signe du produit		

Exercice 2 — Somme d'aires

- SEHN est un rectangle tel que SE = 24 et EH = 16;
- P est un point mobile sur le segment [EH]. On pose EP = x;
- la droite (TA) est parallèle à la droite (EH) et le droite (PI) à la droite (SE) : elles se coupent en F telles que TEPF soit un carré.



- 1. Vérifier que $x^2 20x + 64 = (x 4)(x 16)$ Il faut développer
- **2.** On note $\mathcal M$ la somme des aires du carré la somme des aires du carré TEPF et du rectangle FANI.
 - a) Calculer \mathcal{A} si EP = 1,5.

- **b)** Montrer que $\mathcal{A} = 2x^2 40x + 384$
 - aire du carré : x^2
 - aire du rectangle : $FA \times AN = (16 x)(24 x)$ donc $\mathcal{A} = x^2 + (16 - x)(24 - x)$; puis développer et réduire.
- c) Déterminer les positions du point P telles que 𝒜 soit inférieure aux deux tiers de l'aire du rectangle SEHN.

 $x \in [0;16]$ et on veut $\mathcal{A} < \frac{2}{3} \times 16 \times 24$ puis développer l'expression et remarquer qu'elle se factorise. Déterminer le signe à l'aide d'un tableau de signes puis conclure.

Exercice 3 — Droites et triangle

7 points

Soient les points A(8;-6) B(-6;8) et C(-6;-8) dans le repère d'origine O.

- 1. Placer les points dans le repère.
- 2. Calculer les coordonnées de B', milieu du segment [AC]

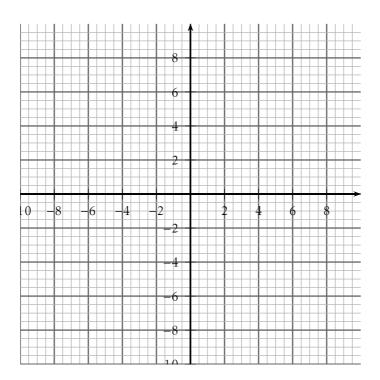
coordonnées du milieu : $\left(\frac{x_A + x_C}{2}; \frac{y_A + y_C}{2};\right)$

- **3.** Déterminer par le calcul, l'équation de la droite (OB'). On sait que la droite passe par l'origine, donc elle représente une fonction linéaire d'équation y = mx avec $m = \frac{y_{B'} y_O}{x_{B'} x_O} = \frac{y_{B'}}{x_{B'}}$
- **4.** Sachant que le point O est le centre du cercle circonscrit au triangle ABC : dire (en justifiant) ce que représente la droite (OB').

la droite (OB') passe par le centre du cercle circonscrit et le milieu d'un côté : c'est la médiatrice du segment [AC].

- **5.** Tracer la hauteur *h* issue de B.
- **6.** Justifier que le coefficient directeur de la droite h est -7, puis déterminer son équation réduite.

$$y = -7(x - x_{\mathrm{B}}) + y_{\mathrm{B}}$$



Exercice 1 — Tableau de signes

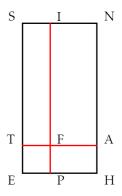
4 points

À l'aide du tableau de signe, résoudre sur \mathbb{R} l'inéquation : (6x-5)(2-x) < 0

X	-∞ +∞	schéma
signe de $(6x-5)$		
signe de $(2-x)$		
signe du produit		

Exercice 2 — Somme d'aires

- SEHN est un rectangle tel que SE = 30 et EH = 20;
- P est un point mobile sur le segment [EH]. On pose EP = x;
- la droite (TA) est parallèle à la droite (EH) et le droite (PI) à la droite (SE) : elles se coupent en F telles que TEPF soit un carré.



- 1. Vérifier que $x^2 25x + 100 = (x 5)(x 20)$ Il faut développer
- **2.** On note $\mathcal M$ la somme des aires du carré la somme des aires du carré TEPF et du rectangle FANI.
 - a) Calculer \mathcal{A} si EP = 1,5.

- **b)** Montrer que $\mathcal{A} = 2x^2 50x + 600$
 - aire du carré : x^2
 - aire du rectangle : $FA \times AN = (20 x)(30 x)$ donc $\mathcal{A} = x^2 + (20 - x)(30 - x)$; puis développer et réduire.
- **c)** Déterminer les positions du point P telles que A soit inférieure aux deux tiers de l'aire du rectangle SEHN.

 $x \in [0;20]$ et on veut $\mathcal{A} < \frac{2}{3} \times 20 \times 30$ puis développer l'expression et remarquer qu'elle se factorise. Déterminer le signe à l'aide d'un tableau de signes puis conclure.

Exercice 3 — Droites et triangle

7 points

Soient les points A(8;6) B(-6;8) et C(-6;-8) dans le repère d'origine O.

- 1. Placer les points dans le repère.
- 2. Calculer les coordonnées de B', milieu du segment [AC]

coordonnées du milieu : $\left(\frac{x_A + x_C}{2}; \frac{y_A + y_C}{2};\right)$

- **3.** Déterminer par le calcul, l'équation de la droite (OB'). On sait que la droite passe par l'origine, donc elle représente une fonction linéaire d'équation y = mx avec $m = \frac{y_{B'} y_O}{x_{B'} x_O} = \frac{y_{B'}}{x_{B'}}$
- 4. Sachant que le point O est le centre du cercle circonscrit au triangle ABC : dire (en justifiant) ce que représente la droite (OB').

la droite (OB') passe par le centre du cercle circonscrit et le milieu d'un côté : c'est la médiatrice du segment [AC].

- **5.** Tracer la hauteur *h* issue de B.
- **6.** Justifier que le coefficient directeur de la droite h est -1, puis déterminer son équation réduite.

$$y = -1(x - x_{\mathrm{B}}) + y_{\mathrm{B}}$$

